Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 363]
|
|
Сложность: 3+ Классы: 7,8,9
|
В соревнованиях участвуют 10 фигуристов. Соревнования судят трое судей следующим способом: каждый судья по-своему распределяет между фигуристами места (с первого по десятое), после чего победителем считается фигурист с наименьшей суммой мест. Какое наибольшее значение может принимать эта сумма у победителя (победитель единственный)?
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Все натуральные числа поделены на хорошие и плохие. Известно, что если число m хорошее, то и число m + 6 тоже хорошее, а если число n плохое, то и число n + 15 тоже плохое. Может ли среди первых 2000 чисел быть ровно 1000 хороших?
На плоскости имеется 1983 точки и окружность единичного радиуса.
Доказать, что на окружности найдётся точка, сумма расстояний от которой до данных точек не меньше 1983.
|
|
Сложность: 3+ Классы: 8,9,10
|
У куба отмечены вершины и центры граней, а также проведены диагонали всех граней.
Можно ли по отрезкам этих диагоналей обойти все отмеченные точки, побывав в каждой из них ровно один раз?
|
|
Сложность: 3+ Классы: 7,8,9
|
a1, a2, a3, a4, a5, a6 – последовательные стороны шестиугольника, все углы которого равны. Докажите, что a1 – a4 = a3 – a6 = a5 – a2.
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 363]