ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.

Вниз   Решение


Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных целых точках принимает простые значения.
Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.

ВверхВниз   Решение


В клетчатом квадрате 10×10 отмечены центры всех единичных квадратиков (всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам квадрата,

нужно провести, чтобы вычеркнуть все отмеченные точки?

ВверхВниз   Решение


В четырёхугольнике ABCD опущены перпендикуляры AM и CP на диагональ BD, а также BN и DQ на диагональ AC.
Доказать, что четырёхугольники ABCD и MNPQ подобны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 78523

Тема:   [ Шестиугольники ]
Сложность: 3+
Классы: 9,10

См. задачу 4 для 8 класса. Кроме того, доказать, что если длины отрезков a1,..., a6 удовлетворяют соотношениям: a1 - a4 = a5 - a2 = a3 - a6, то из этих отрезков можно построить равноугольный шестиугольник.
Прислать комментарий     Решение


Задача 78529

Темы:   [ Принцип Дирихле (прочее) ]
[ Процессы и операции ]
Сложность: 3+
Классы: 7,8,9

Собрались 2n человек, каждый из которых знаком не менее чем с n присутствующими. Доказать, что можно выбрать из них четырёх человек и рассадить их за круглым столом так, что при этом каждый будет сидеть рядом со своими знакомыми (n$ \ge$2).
Прислать комментарий     Решение


Задача 78530

Темы:   [ Неравенства с площадями ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Разные задачи на разрезания ]
Сложность: 3+
Классы: 7,8

В квадрате со стороной длины 1 выбрано 102 точки, из которых никакие три не лежат на одной прямой. Доказать, что найдётся треугольник с вершинами в этих точках, площадь которого меньше, чем 1/100.
Прислать комментарий     Решение


Задача 78532

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7

При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?
Прислать комментарий     Решение


Задача 78538

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 9,10

Доказать, что любое чётное число 2n$ \ge$ 0 может быть единственным образом представлено в виде 2n = (x + y)2 + 3x + y, где x и y — целые неотрицательные числа.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .