ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Участникам тестовой олимпиады было предложено n вопросов. Жюри определяет сложность каждого из вопросов: целое положительное количество баллов, получаемых участниками за правильный ответ на вопрос. За неправильный ответ начисляется 0 баллов, все набранные участником баллы суммируются. Когда все участники сдали листки со своими ответами, оказалось, что жюри так может определить сложность вопросов, чтобы места между участниками распределились любым наперед заданным образом. При каком наибольшем числе участников это могло быть?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 65704  (#11.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 10,11

Автор: Жуков Г.

Квадратный трёхчлен  f(x) = ax² + bx + c,  не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена  f(x) быть рациональным?

Прислать комментарий     Решение

Задача 65705  (#11.2)

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Автор: Храбров А.

Положительные числа x, y и z удовлетворяют условию  xyz ≥ xy + yz + zx.  Докажите неравенство  

Прислать комментарий     Решение

Задача 65706  (#11.3)

Темы:   [ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 10,11

В треугольнике ABC проведена биссектриса BL. На отрезке CL выбрана точка M. Касательная в точке B к описанной окружности Ω треугольника ABC пересекает луч CA в точке P. Касательные в точках B и M к описанной окружности Γ треугольника BLM, пересекаются в точке Q. Докажите, что прямые PQ и BL параллельны.

Прислать комментарий     Решение

Задача 65707  (#11.4)

Темы:   [ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Есть клетчатая доска 2015×2015. Дима ставит в k клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем k Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?

Прислать комментарий     Решение

Задача 65702  (#11.5)

Темы:   [ Теория множеств (прочее) ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых  a + b  лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .