Страница: 1
2 >> [Всего задач: 8]
Задача
65704
(#11.1)
|
|
Сложность: 3+ Классы: 10,11
|
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена f(x) быть рациональным?
Задача
65705
(#11.2)
|
|
Сложность: 3+ Классы: 10,11
|
Положительные числа x, y и z удовлетворяют условию xyz ≥ xy + yz + zx. Докажите неравенство
Задача
65706
(#11.3)
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC проведена биссектриса BL. На отрезке CL выбрана точка M. Касательная в точке B к описанной окружности Ω треугольника ABC пересекает луч CA в точке P. Касательные в точках B и M к описанной окружности Γ треугольника BLM, пересекаются в точке Q. Докажите, что прямые PQ и BL параллельны.
Задача
65707
(#11.4)
|
|
Сложность: 4 Классы: 10,11
|
Есть клетчатая доска 2015×2015. Дима ставит в k клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем k Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?
Задача
65702
(#11.5)
|
|
Сложность: 4- Классы: 9,10,11
|
Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел.
Страница: 1
2 >> [Всего задач: 8]