Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]
Задача
65752
(#10.4)
|
|
Сложность: 3 Классы: 10,11
|
Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.
Задача
65760
(#11.4)
|
|
Сложность: 5- Классы: 10,11
|
В координатном пространстве провели все плоскости с уравнениями x ± y ± z = n (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка (x0, y0, z0) с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка (kx0, ky0, kz0) лежит строго внутри некоторого октаэдра разбиения.
Задача
65745
(#9.5)
|
|
Сложность: 3+ Классы: 7,8,9
|
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Задача
65745
(#10.5)
|
|
Сложность: 3+ Классы: 7,8,9
|
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Задача
65761
(#11.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть n – натуральное число. На 2n + 1 карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении *x2n + *x2n–1 + ... *x + * так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?
Страница:
<< 1 2 3
4 5 >> [Всего задач: 24]