Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 7,8,9
|
Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и X + Y = 9...9 (1111 девяток)?
|
|
Сложность: 3+ Классы: 10,11
|
В окружность вписаны две равнобочные трапеции так, что каждая сторона одной
трапеции параллельна некоторой стороне другой.
Докажите, что диагонали одной трапеции равны диагоналям другой.
|
|
Сложность: 3+ Классы: 8,9,10
|
Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться).
Каждый из учеников вытянул один билет. Учитель может произвести следующую
операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.
Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две
противоположные грани и не уткнулась в кирпич.
|
|
Сложность: 3+ Классы: 8,9,10
|
Существует ли степень двойки, из которой перестановкой цифр можно получить
другую степень двойки?
Страница:
<< 110 111 112 113
114 115 116 >> [Всего задач: 1703]