ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В книге рекордов Гиннесса написано, что наибольшее известное простое число равно  23021377 – 1.  Не опечатка ли это?

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 381]      



Задача 103861

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Дроби (прочее) ]
Сложность: 2
Классы: 6,7

Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось произведению двух соседних.

Прислать комментарий     Решение

Задача 103864

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 6,7,8

В книге рекордов Гиннесса написано, что наибольшее известное простое число равно  23021377 – 1.  Не опечатка ли это?

Прислать комментарий     Решение

Задача 103866

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Для постройки типового дома не хватало места. Архитектор изменил проект: убрал два подъезда и добавил три этажа. При этом количество квартир увеличилось. Он обрадовался и решил убрать ещё два подъезда и добавить ещё три этажа.
Могло ли при этом квартир стать даже меньше, чем в типовом проекте? (В каждом подъезде одинаковое число этажей и на всех этажах во всех подъездах одинаковое число квартир.)

Прислать комментарий     Решение

Задача 103872

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Художник-авангардист Змий Клеточкин покрасил несколько клеток доски размером 7×7, соблюдая правило: каждая следующая закрашиваемая клетка должна соседствовать по стороне с предыдущей закрашенной клеткой, но не должна соседствовать ни с одной другой ранее закрашенной клеткой. Ему удалось покрасить 31 клетку.

Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.

Прислать комментарий     Решение


Задача 103884

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .