Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]
Задача
110060
(#01.4.11.7)
|
|
Сложность: 5- Классы: 9,10,11
|
На плоскости дано бесконечное множество точек
S , при этом
в любом квадрате
1×1
лежит конечное число точек из множества
S .
Докажите, что найдутся две разные точки
A и
B из
S
такие, что для любой другой точки
X из
S выполняются неравенства:
|XA|,|XB| 0,999|AB|.
Задача
110061
(#01.4.11.8)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.
Задача
109745
(#01.5.9.1)
|
|
Сложность: 4 Классы: 7,8,9
|
Числа от 1 до 999999 разбиты на две группы: в первую отнесено каждое число, для
которого ближайшим к нему квадратом является квадрат нечётного числа, во вторую – числа, для которых ближайшими являются квадраты чётных чисел. В какой из групп сумма чисел больше?
Задача
109746
(#01.5.9.2)
|
|
Сложность: 5- Классы: 8,9,10
|
Два многочлена P(x) = x4 + ax³ + bx² + cx + d и Q(x) = x² + px + q принимают отрицательные значения на некотором интервале I длины более 2, а вне I – неотрицательны. Докажите, что найдётся такая точка x0, что P(x0) < Q(x0).
Задача
108140
(#01.5.9.3)
|
|
Сложность: 4 Классы: 8,9
|
Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 56]