ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 109437

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Неравенство треугольника (прочее) ]
Сложность: 2+
Классы: 8,9

Точка M лежит на стороне BC треугольника ABC . Известно, что радиус окружности, вписанной в треугольник ABM , в два раза больше радиуса окружности, вписанной в треугольник ACM . Может ли отрезок AM оказаться медианой треугольника ABC ?
Прислать комментарий     Решение


Задача 109438

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3-
Классы: 8,9,10,11

Функция f такова, что для любых положительных x и y выполняется равенство f(xy) = f(x) + f(y) . Найдите f(2007) , если f() = 1 .
Прислать комментарий     Решение


Задача 109435

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические неравенства ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 9,10,11

Что больше:     или   ?

Прислать комментарий     Решение

Задача 109436

Темы:   [ Количество и сумма делителей числа ]
[ Классическая комбинаторика (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.

Прислать комментарий     Решение

Задача 109439

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Прямоугольные параллелепипеды ]
[ Углы между прямыми и плоскостями ]
[ Вспомогательные подобные треугольники ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неравенство Коши ]
Сложность: 4
Классы: 10,11

Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD.
Найдите наибольшую возможную величину угла между прямой BD1 и плоскостью ВDС1.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .