ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Олимпиады и турниры
>>
Олимпиада по геометрии имени И.Ф. Шарыгина
>>
III Олимпиада по геометрии имени И.Ф. Шарыгина (2007 г.)
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Восстановите прямоугольный треугольник ABC (∠C = 90°) по вершинам A, C и точке на биссектрисе угла B . Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?
Мальчик с папой стоят на берегу моря. Если мальчик встанет на цыпочки, его глаза будут на высоте 1 м от поверхности моря, а если сядет папе на плечи, то на высоте 2 м. Во сколько раз дальше он будет видеть во втором случае. (Найдите ответ с точностью до 0,1, радиус Земли считайте равным 6000 км.)
а) Сколько осей симметрии может иметь клетчатый многоугольник, то есть многоугольник, стороны которого лежат на линиях листа бумаги в клетку? б) Сколько осей симметрии может иметь клетчатый многогранник, то есть многогранник, составленный из одинаковых кубиков, примыкающих друг к другу гранями?
Восстановите прямоугольный треугольник ABC (∠C = 90°) по вершинам A, C и точке на биссектрисе угла B .
Диагонали выпуклого четырёхугольника делят его на четыре подобных треугольника. Докажите, что его можно разрезать на два равных треугольника.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|