Страница: 1
2 3 4 >> [Всего задач: 18]
|
|
Сложность: 3+ Классы: 7,8,9
|
Впишите в данный полукруг правильный треугольник наибольшего периметра.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что BX = BY.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Докажите, что прямая, соединяющая точки касания, проходит через одну из общих точек этих окружностей.
|
|
Сложность: 4- Классы: 7,8,9
|
При каком наименьшем
n существует
n -угольник,
который можно разрезать на треугольник, четырехугольник, ...,
2006-угольник?
Две равные окружности пересекаются в точках
A и
B .
P – отличная
от
A и
B точка одной из окружностей,
X ,
Y – вторые точки пересечения
прямых
PA ,
PB с другой окружностью. Докажите, что прямая, проходящая через
P и перпендикулярная
AB , делит одну из дуг
XY пополам.
Страница: 1
2 3 4 >> [Всего задач: 18]