ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике  ABC проведена биссектриса  BD (точка  D лежит на отрезке  AC ). Прямая  BD пересекает окружность  Ω , описанную около треугольника  ABC , в точках  B и  E . Окружность  ω , построенная на отрезке  DE как на диаметре, пересекает окружность  Ω в точках  E и  F . Докажите, что прямая, симметричная прямой  BF относительно прямой  BD , содержит медиану треугольника  ABC .

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 115412  (#06.4.9.1)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 3+
Классы: 8,9

Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).

Прислать комментарий     Решение

Задача 115413  (#06.4.9.2)

Темы:   [ Биссектриса делит дугу пополам ]
[ Диаметр, основные свойства ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательная окружность ]
Сложность: 4+
Классы: 8,9

В треугольнике  ABC проведена биссектриса  BD (точка  D лежит на отрезке  AC ). Прямая  BD пересекает окружность  Ω , описанную около треугольника  ABC , в точках  B и  E . Окружность  ω , построенная на отрезке  DE как на диаметре, пересекает окружность  Ω в точках  E и  F . Докажите, что прямая, симметричная прямой  BF относительно прямой  BD , содержит медиану треугольника  ABC .
Прислать комментарий     Решение


Задача 115414  (#06.4.9.3)

Темы:   [ Делимость чисел. Общие свойства ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

Дано натуральное  n > 1.  Число  a > n²  таково, что среди чисел  a + 1, a + 2, ..., a + n  есть кратные каждого из чисел  n² + 1, n² + 2, ..., n² + n.
Докажите, что  a > n4n³.

Прислать комментарий     Решение

Задача 115415  (#06.4.9.4)

Темы:   [ Полуинварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Трушин Б.

По кругу стоят 100 напёрстков. Под одним из них спрятана монетка. За один ход разрешается перевернуть четыре напёрстка и проверить, лежит ли под одним из них монетка. После этого их возвращают в исходное положение, а монетка перемещается под один из соседних с ней напёрстков. За какое наименьшее число ходов наверняка удастся обнаружить монетку?

Прислать комментарий     Решение

Задача 115416  (#06.4.9.5)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Системы алгебраических неравенств ]
[ Разложение на множители ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Числа a, b и c таковы, что  (a + b)(b + c)(c + a) = abc,  (a³ + b³)(b³ + c³)(c³ + a3) = a³b³c³.  Докажите, что  abc = 0.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .