ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)
а) Три богатыря едут верхом по кольцевой дороге против часовой стрелки. Могут ли они ехать неограниченно долго с различными постоянными скоростями, если на дороге есть только одна точка, в которой богатыри имеют возможность обгонять друг друга?
Найдите все такие натуральные числа a и b, что (a + b²)(b + a²) является целой степенью двойки.
Из гирек весами 1 г, 2 г, ..., N г требуется выбрать несколько (больше одной) с суммарным весом, равным среднему весу оставшихся гирек. Докажите, что
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|