ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
соревнования:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31. Решение |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 7843]
В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.
Найдите все пары простых чисел, разность квадратов которых является простым числом.
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
В вершинах шестиугольника ABCDEF (см. рис.) лежали 6 одинаковых на вид шариков: в A — массой 1 г, в B — 2 г, ..., в F — 6 г. Шутник поменял местами два шарика в противоположных вершинах. Имеются двухчашечные весы, позволяющие узнать, в какой из чаш масса шариков больше. Как за одно взвешивание определить, какие именно шарики переставлены?
В шести корзинах лежат груши, сливы и яблоки. Число слив в каждой корзине равно числу яблок в остальных корзинах вместе взятых, а число яблок в каждой корзине равно числу груш в остальных корзинах вместе взятых. Докажите, что общее число фруктов делится на 31.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 7843] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|