ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый четырёхугольник ABCD таков, что  AB·CD = AD·BC.  Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 116600  (#11.6)

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Простые числа и их свойства ]
Сложность: 3-
Классы: 8,9,10

В волейбольном турнире с участием 73 команд каждая команда сыграла с каждой по одному разу. В конце турнира все команды разделили на две непустые группы так, что каждая команда первой группы одержала ровно n побед, а каждая команда второй группы – ровно m побед. Могло ли оказаться, что  mn?

Прислать комментарий     Решение

Задача 116601  (#11.7)

Темы:   [ Тригонометрический круг ]
[ Тригонометрия (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9,10

Даны различные натуральные числа a, b. На координатной плоскости нарисованы графики функций  y = sin axy = sin bx  и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a, b и такое, что график функции  y = sin cx  проходит через все отмеченные точки.

Прислать комментарий     Решение

Задача 116602  (#11.8)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Отношение, в котором биссектриса делит сторону ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 8,9,10

Выпуклый четырёхугольник ABCD таков, что  AB·CD = AD·BC.  Докажите, что –∠BAC + ∠CBD + ∠DCA + ∠ADB = 180°.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .