Страница: 1
2 >> [Всего задач: 8]
Задача
116638
(#10.1)
|
|
Сложность: 4 Классы: 8,9,10
|
В каждой клетке таблицы, состоящей из 10 столбцов и n строк, записана цифра. Известно, что для каждой строки A и любых двух столбцов найдётся строка, отличающаяся от A ровно в этих двух столбцах. Докажите, что n ≥ 512.
Задача
116639
(#10.2)
|
|
Сложность: 3 Классы: 8,9,10
|
На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9.
Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?
Задача
116640
(#10.3)
|
|
Сложность: 5- Классы: 8,9,10
|
Назовём компанию k-неразбиваемой, если при любом разбиении её на k групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.
Задача
116641
(#10.4)
|
|
Сложность: 4 Классы: 8,9,10
|
Периметр треугольника ABC равен 4. На лучах AB и AC отмечены точки X и Y так, что AX = AY = 1. Отрезки BC и XY пересекаются в точке M. Докажите, что периметр одного из треугольников ABM и ACM равен 2.
Задача
116642
(#10.5)
|
|
Сложность: 3 Классы: 8,9,10
|
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
Страница: 1
2 >> [Всего задач: 8]