ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.

   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 20]      



Задача 76427

Тема:   [ Задачи на максимум и минимум (прочее) ]
Сложность: 3+
Классы: 10,11

На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных.
Прислать комментарий     Решение


Задача 76430

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 9,10

Решить систему уравнений:
   x³ – y³ = 26,
   x²y – xy² = 6.

Прислать комментарий     Решение

Задача 76431

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9

Найти сумму

13 + 33 + 53 + ... + (2n - 1)3.

Прислать комментарий     Решение

Задача 76428

Тема:   [ Прямые и плоскости в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

В двух различных плоскостях лежат два треугольника: ABC и A1B1C1. Прямая AB пересекается с прямой A1B1, прямая BC — с прямой B1C1, прямая CA — с прямой C1A1. Доказать, что прямые AA1, BB1 и CC1 или все три пересекаются в одной точке, или параллельны друг другу.
Прислать комментарий     Решение


Задача 54585

Темы:   [ Построение треугольников по различным элементам ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

Постройте треугольник по двум сторонам и биссектрисе, проведённым из одной вершины.

Прислать комментарий     Решение


Страница: << 1 2 3 4 [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .