ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL. ![]() ![]() Четырехугольник ABCD вписан в окружность, причем касательные в точках B и D пересекаются в точке K, лежащей на прямой AC. а) Докажите, что AB . CD = BC . AD. б) Прямая, параллельная KB, пересекает прямые BA, BD и BC в точках P, Q и R. Докажите, что PQ = QR. ![]() ![]() |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1956]
а) Докажите, что AB . CD = BC . AD. б) Прямая, параллельная KB, пересекает прямые BA, BD и BC в точках P, Q и R. Докажите, что PQ = QR.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1956] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |