ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Вялый М.Н.

Последовательность {an} определяется правилами:  a0 = 9,    .
Докажите, что в десятичной записи числа a10 содержится не менее 1000 девяток.

Вниз   Решение


В выпуклом четырёхугольнике ABCD  AD = АВ + CD.  Оказалось, что биссектриса угла А проходит через середину стороны ВС.
Докажите, что биссектриса угла D также проходит через середину ВС.

ВверхВниз   Решение


Пусть Oa, Ob и Oc — центры описанных окружностей треугольников PBC, PCA и PAB. Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.

ВверхВниз   Решение


Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.

Вверх   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1956]      



Задача 56714  (#03.053)

Темы:   [ Радикальная ось ]
[ Метод координат на плоскости ]
Сложность: 5
Классы: 8,9,10

На плоскости даны две неконцентрические окружности S1 и S2. Докажите, что геометрическим местом точек, для которых степень относительно S1 равна степени относительно S2, является прямая.



Прислать комментарий     Решение

Задача 56715  (#03.054)

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Докажите, что радикальная ось двух пересекающихся окружностей проходит через точки их пересечения.
Прислать комментарий     Решение


Задача 56716  (#03.055)

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

На плоскости даны три окружности, центры которых не лежат на одной прямой. Проведем радикальные оси для каждой пары этих окружностей. Докажите, что все три радикальные оси пересекаются в одной точке.

Прислать комментарий     Решение


Задача 56717  (#03.056)

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Выход в пространство ]
Сложность: 4-
Классы: 9

На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

Прислать комментарий     Решение

Задача 56718  (#03.057B)

Тема:   [ Радикальная ось ]
Сложность: 5
Классы: 9

Постройте радикальную ось двух непересекающихся окружностей S1 и S2.
Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .