ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если  Pn/Qn  (n ≥ 1)  – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств     или     Получите отсюда теорему Валена: для любого α найдётся бесконечно много таких дробей p/q, что  |α – p/q| < 1/2q2.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 60620  (#03.168)

 [Теорема Валена]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Докажите, что если  Pn/Qn  (n ≥ 1)  – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств     или     Получите отсюда теорему Валена: для любого α найдётся бесконечно много таких дробей p/q, что  |α – p/q| < 1/2q2.

Прислать комментарий     Решение

Задача 60621  (#03.169)

Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
[ Линейные рекуррентные соотношения ]
Сложность: 5-
Классы: 10,11

Докажите, что для любых целых чисел p и q  (q ≠ 0),  справедливо неравенство  

Прислать комментарий     Решение

Задача 60622  (#03.170)

Темы:   [ Числа Фибоначчи ]
[ Цепные (непрерывные) дроби ]
[ Алгоритм Евклида ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при  k ≥ 1  выполняется равенство:   = [aFk; aFk–1, ..., aF0],   где {Fk} – последовательность чисел Фибоначчи.

Прислать комментарий     Решение

Задача 60623  (#03.171)

Темы:   [ Цепные (непрерывные) дроби ]
[ Квадратные уравнения и системы уравнений ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3
Классы: 9,10,11

а) Докажите, что положительный корень квадратного уравнения  bx² – abx – a = 0,  где a и b – различные натуральные числа, разлагается в чисто периодическую цепную дробь с длиной периода, равной 2.
б) Верно ли обратное утверждение?

Прислать комментарий     Решение

Задача 60624  (#03.172)

Темы:   [ Цепные (непрерывные) дроби ]
[ Квадратные уравнения. Формула корней ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 10,11

Докажите, что если квадратное уравнение с целыми коэффициентами имеет корень  [],  то вторым корнем служит число   

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .