ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовём шестизначное число счастливым, если сумма его первых трёх цифр равна сумме последних трёх цифр. Докажите, что сумма всех счастливых чисел делится на 13. (Числа, записываемые менее, чем шестью цифрами, в этой задаче также считаются шестизначными.)

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1255]      



Задача 60661  (#04.035)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9,10

Назовём шестизначное число счастливым, если сумма его первых трёх цифр равна сумме последних трёх цифр. Докажите, что сумма всех счастливых чисел делится на 13. (Числа, записываемые менее, чем шестью цифрами, в этой задаче также считаются шестизначными.)

Прислать комментарий     Решение

Задача 60662  (#04.036)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом.

Прислать комментарий     Решение

Задача 60663  (#04.037)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  77777 – 7777  делится на 10.

Прислать комментарий     Решение

Задача 60664  (#04.038)

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10

Число x таково, что x² заканчивается на 001 (в десятичной системе счисления).
Найдите три последние цифры числа x (укажите все возможные варианты).

Прислать комментарий     Решение

Задача 60665  (#04.039)

Темы:   [ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 7,8,9,10

Имеется много одинаковых квадратов. В вершинах каждого из них в произвольном порядке написаны числа 1, 2, 3 и 4. Квадраты сложили в стопку и написали сумму чисел, попавших в каждый из четырёх углов стопки. Может ли оказаться так, что
  а) в каждом углу стопки сумма равна 2004?
  б) в каждом углу стопки сумма равна 2005?

Прислать комментарий     Решение

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .