ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Число x таково, что x² заканчивается на 001 (в десятичной системе счисления). ![]() |
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1255]
Назовём шестизначное число счастливым, если сумма его первых трёх цифр равна сумме последних трёх цифр. Докажите, что сумма всех счастливых чисел делится на 13. (Числа, записываемые менее, чем шестью цифрами, в этой задаче также считаются шестизначными.)
Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом.
Докажите, что 77777 – 7777 делится на 10.
Число x таково, что x² заканчивается на 001 (в десятичной системе счисления).
Имеется много одинаковых квадратов. В вершинах каждого из них в произвольном порядке написаны числа 1, 2, 3 и 4. Квадраты сложили в стопку и написали сумму чисел, попавших в каждый из четырёх углов стопки. Может ли оказаться
так, что
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1255] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |