ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны. Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 116950  (#11.4)

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Автор: Ивлев Ф.

В окружность Ω вписан остроугольный треугольник ABC, в котором  AB > BC.  Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.

Прислать комментарий     Решение

Задача 64347  (#9.4)

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Ломаные ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 9,10

Автор: Фольклор

На плоскости проведены n прямых, среди которых нет параллельных. Никакие три из них не пересекаются в одной точке. Докажите, что существует такая n-звенная несамопересекающаяся ломаная A0A1A2...An, что на каждой из n прямых лежит ровно по одному звену этой ломаной.

Прислать комментарий     Решение

Задача 64354  (#10.4)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Симметрия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что  ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
Докажите, что прямая PQ образует равные углы с прямыми AD и BC.

Прислать комментарий     Решение

Задача 64362  (#11.4)

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
[ Индукция (прочее) ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 5
Классы: 10,11

На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны. Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?

Прислать комментарий     Решение

Задача 116935  (#9.5)

Темы:   [ Исследование квадратного трехчлена ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Ненулевые числа a и b таковы, что уравнение  a(x – a)² + b(x – b)² = 0  имеет единственное решение. Докажите, что  |a| = |b|.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .