ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC  ∠B = 60°,  O – центр описанной окружности, BL – биссектриса. Описанная окружность треугольника BOL пересекает описанную окружность треугольника ABC вторично в точке D. Докажите, что  BDAC.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 819]      



Задача 64804

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 9,10

Пусть ABCD – вписанный четырёхугольник. Докажите, что  AC > BD  тогда и только тогда, когда  (AD – BC)(AB – CD) > 0.

Прислать комментарий     Решение

Задача 64808

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Симметрия помогает решить задачу ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC  ∠B = 60°,  O – центр описанной окружности, BL – биссектриса. Описанная окружность треугольника BOL пересекает описанную окружность треугольника ABC вторично в точке D. Докажите, что  BDAC.

Прислать комментарий     Решение

Задача 64812

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Проекция на прямую (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Вершины равнобедренного треугольника и центр его описанной окружности лежат на четырёх различных сторонах квадрата.
Найдите углы треугольника.

Прислать комментарий     Решение

Задача 64859

Темы:   [ Построение треугольников по различным точкам ]
[ Гомотетия: построения и геометрические места точек ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 9,10

В треугольнике провели высоту из одной вершины, биссектрису из другой и медиану из третьей, отметили точки их попарного пересечения, а затем всё, кроме этих отмеченных точек, стерли (три отмеченные точки различны, кроме того, известно, какая является чьим пересечением). Восстановите треугольник.

Прислать комментарий     Решение

Задача 64865

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Кноп К.А.

Есть бумажный квадрат со стороной 2. Можно ли вырезать из него 12-угольник, у которого длины всех сторон равны 1, а все углы кратны 45°?

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .