ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан выпуклый четырёхугольник ABCD. Известно, что  ∠ABD + ∠ACD > ∠BAC + ∠BDC.  Докажите, что  SABD + SACD > SBAC + SBDC.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 819]      



Задача 65016

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9,10,11

В остроугольном треугольнике ABC  AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что
  а) сумма диаметров этих окружностей равна стороне BC.

  б)  

Прислать комментарий     Решение

Задача 65022

Темы:   [ Четырехугольник (неравенства) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 10,11

Дан выпуклый четырёхугольник ABCD. Известно, что  ∠ABD + ∠ACD > ∠BAC + ∠BDC.  Докажите, что  SABD + SACD > SBAC + SBDC.

Прислать комментарий     Решение

Задача 65027

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Существует ли выпуклый семиугольник, который можно разрезать на 2011 равных треугольников?

Прислать комментарий     Решение

Задача 65029

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вписанные и описанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 65030

Темы:   [ Правильный (равносторонний) треугольник ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA', BB', CC'. Известно, что в треугольнике A'B'C' эти прямые также являются биссектрисами.
Верно ли, что треугольник ABC равносторонний?

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .