ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную). ![]() |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]
На стороне AB четырёхугольника ABCD нашлась такая точка M, что четырёхугольники AMCD и BMDC описаны около окружностей с центрами O1 и O2 соответственно. Прямая O1O2 отсекает от угла CMD равнобедренный треугольник с вершиной M. Докажите, что четырёхугольник ABCD вписанный.
На сторонах AB, AC треугольника ABC взяли такие точки C1, B1 соответственно, что BB1 ⊥ CC1. Точка X внутри треугольника такова, что
Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
Дан выпуклый четырёхугольник. Постройте циркулем и линейкой точку, проекции которой на прямые, содержащие его стороны, являются вершинами параллелограмма.
На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную).
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |