ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Художник-абстракционист взял деревянный куб 5×5×5, разбил каждую грань на единичные квадраты и окрасил каждый из них в один из трёх цветов – чёрный, белый или красный – так, что нет соседних по стороне квадратов одного цвета. Какое наименьшее число чёрных квадратов могло при этом получиться? (Квадраты, имеющие общую сторону, считаются соседними и в случае, когда они лежат на разных гранях куба.)

Вниз   Решение


На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

ВверхВниз   Решение


Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 65693  (#9.1)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 9,10,11

Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

Прислать комментарий     Решение

Задача 65693  (#10.1)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 9,10,11

Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

Прислать комментарий     Решение

Задача 65704  (#11.1)

Темы:   [ Исследование квадратного трехчлена ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 10,11

Автор: Жуков Г.

Квадратный трёхчлен  f(x) = ax² + bx + c,  не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена  f(x) быть рациональным?

Прислать комментарий     Решение

Задача 65694  (#9.2)

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 9,10,11

Автор: Обухов Б.

Дан равнобедренный треугольник ABC,  AB = BC.  В описанной окружности Ω треугольника ABC проведён диаметр CC'. Прямая, проходящая через точку C' параллельно BC, пересекает отрезки AB и AC в точках M и P соответственно. Докажите, что M – середина отрезка C'P.

Прислать комментарий     Решение

Задача 65700  (#10.2)

Темы:   [ Разбиения на пары и группы; биекции ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .