Страница: 1
2 >> [Всего задач: 7]
Задача
66109
(#1)
|
|
Сложность: 3+ Классы: 7,8,9
|
В шахматном турнире было 10 участников. В каждом туре участники разбивались на пары и в каждой паре играли друг с другом одну игру. В итоге каждый участник сыграл с каждым ровно один раз, причём не меньше чем в половине всех игр участники были земляками (из одного города). Докажите, что в каждом туре хоть одна игра была между земляками.
Задача
66110
(#2)
|
|
Сложность: 4- Классы: 8,9,10
|
Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
а) слева; б) в центре; в) справа?
(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)
Задача
66111
(#3)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
а) Могло ли случиться, что до a5 последовательность убывает (a1 > a2 > a3 > a4 > a5), а начиная с a5 – возрастает (a5 < a6 < a7 < ...)?
б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?
Задача
66112
(#4)
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом шестиугольнике ABCDEF все стороны равны, а также AD = BE = CF. Докажите, что в этот шестиугольник можно вписать окружность.
Задача
66113
(#5)
|
|
Сложность: 4- Классы: 7,8,9,10
|
Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?
Страница: 1
2 >> [Всего задач: 7]