Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 1703]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Фокусник выкладывает в ряд колоду из 52 карт и объявляет, что 51 из них будут выкинуты со стола, а останется тройка треф.
Зритель на каждом шаге говорит, какую по счёту с края карту надо выкинуть, а фокусник выбирает, с левого или с правого края считать, и выкидывает соответствующую карту.
При каких начальных положениях тройки треф можно гарантировать успех фокуса?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дана окружность ω с центром $O$ и две её различные точки $A$ и $C$. Для любой другой точки $P$ на ω отметим середины $X$ и $Y$ отрезков $AP$ и $CP$ и построим точку $H$ пересечения высот треугольника $OXY$. Докажите, что положение точки $H$ не зависит от выбора точки $P$.
|
|
Сложность: 3 Классы: 8,9,10,11
|
В каждой клетке полоски длины 100 стоит по фишке.
Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно три фишки.
За какое наименьшее количество рублей можно переставить фишки в обратном порядке?
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан выпуклый пятиугольник $ABCDE$, в котором AE || CD и $AB = BC$. Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что BK || AE.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 1703]