Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 1703]
|
|
Сложность: 3 Классы: 8,9,10
|
Взяли пять натуральных чисел и для каждых двух записали их сумму.
Могло ли оказаться, что все 10 получившихся сумм оканчиваются разными цифрами?
|
|
Сложность: 3 Классы: 8,9,10
|
На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?
|
|
Сложность: 3 Классы: 7,8,9
|
Найдите наименьшее натуральное число, которое начинается (в десятичной записи) на 2016 и делится на 2017.
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Имеется 5 ненулевых чисел. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что пять сумм положительны и пять сумм отрицательны. Сколько произведений положительны и сколько – отрицательны?
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 1703]