ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 77890

Тема:   [ Процессы и операции ]
Сложность: 3+
Классы: 8,9

12 полей расположены по кругу: на четырёх соседних полях стоят четыре разноцветных фишки: красная, жёлтая, зелёная и синяя. Одним ходом можно передвинуть любую фишку с поля, на котором она стоит, через четыре поля на пятое (если оно свободно) в любом из двух возможных направлений. После нескольких ходов фишки стали опять на те же четыре поля. Как они могут при этом переставиться?
Прислать комментарий     Решение


Задача 77892

Темы:   [ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Четность и нечетность ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.

Прислать комментарий     Решение

Задача 77893

Темы:   [ Шестиугольники ]
[ Теорема о группировке масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 4-
Классы: 8,9

В произвольном (выпуклом — прим. ред.) шестиугольнике соединены через одну середины сторон. Докажите, что точки пересечения медиан двух образовавшихся треугольников совпадают.
Прислать комментарий     Решение


Задача 77894

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.

Прислать комментарий     Решение

Задача 77891

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
Сложность: 5-
Классы: 8,9

Даны два треугольника: $ \Delta$ABC и $ \Delta$DEF и точка O. Берется любая точка X в $ \Delta$ABC и любая точка Y в $ \Delta$DEF; треугольник OXY достаивается до параллелограмма OXZY. а) Докажите, что все полученные таким образом точки образуют многоугольник. б) Сколько сторон он может иметь? в) Докажите, что его периметр равен сумме периметров исходных треугольников.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .