Страница: 1
2 >> [Всего задач: 6]
12 полей расположены по кругу: на четырёх соседних полях стоят четыре
разноцветных фишки: красная, жёлтая, зелёная и синяя.
Одним ходом можно передвинуть любую фишку с поля, на котором она стоит, через
четыре поля на пятое (если оно свободно) в любом из двух возможных
направлений. После нескольких ходов фишки стали опять на те же четыре поля. Как
они могут при этом переставиться?
Имеется 13 гирь, каждая из которых весит целое число граммов. Известно, что
любые 12 из них можно так разложить на две чашки весов, по шесть гирь на каждой, что наступит равновесие. Докажите, что все гири имеют один и тот же вес.
В произвольном (
выпуклом — прим. ред.) шестиугольнике соединены через
одну середины сторон. Докажите, что точки пересечения медиан двух
образовавшихся треугольников совпадают.
Если имеется 100 любых целых чисел, то среди них всегда можно взять несколько (или может быть одно) так, что в сумме они дадут число, делящееся на 100. Доказать.
Даны два треугольника:
ABC и
DEF и точка
O. Берется любая
точка
X в
ABC и любая точка
Y в
DEF; треугольник
OXY
достаивается до параллелограмма
OXZY.
а) Докажите, что все полученные таким образом точки образуют многоугольник.
б) Сколько сторон он может иметь?
в) Докажите, что его периметр равен сумме периметров исходных треугольников.
Страница: 1
2 >> [Всего задач: 6]