ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Определить наибольшее значение отношения трёхзначного числа к числу, равному сумме цифр этого числа.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 77999

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Определить наибольшее значение отношения трёхзначного числа к числу, равному сумме цифр этого числа.

Прислать комментарий     Решение

Задача 78000

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Из квадрата размером 3 на 3 вырезать одну фигуру, которая представляет развёртку полной поверхности куба, длина ребра которого равна 1.
Прислать комментарий     Решение


Задача 78003

Темы:   [ Многочлены (прочее) ]
[ Производная и кратные корни ]
Сложность: 3
Классы: 10,11

Доказать, что если     то  x4 + a1x³ + a2x² + a3x + a4  делится на  (x – x0)².

Прислать комментарий     Решение

Задача 78004

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 8,9,10,11

Дано число 123456789101112131415...99100. Вычеркнуть 100 цифр так, чтобы оставшееся число было наибольшим.
Прислать комментарий     Решение


Задача 78015

Темы:   [ Свойства симметрий и осей симметрии ]
[ Многоугольники ]
Сложность: 3
Классы: 9

Сколько осей симметрии может иметь семиугольник?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .