Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 28]
|
|
Сложность: 3+ Классы: 8,9,10
|
Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках A, B, C, D, что AB = CD, AD = BC и сумма чисел, стоящих в клетках с центрами в A и C, равна сумме чисел в клетках с центрами B и D.
|
|
Сложность: 3+ Классы: 10,11
|
Сколько плоскостей симметрии может иметь треугольная пирамида?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Рассматриваются всевозможные десятизначные числа, записываемые при помощи двоек и
единиц. Разбить их на два класса так, чтобы при сложении любых двух чисел каждого
класса получалось число, в написании которого содержится не менее двух троек.
Найти все решения системы уравнений x(1 – 2–n) + y(1 – 2–n–1) + z(1 – 2–n–2) = 0, где n = 1, 2, 3, 4, ...
План города представляет собой плоскость, разбитую на одинаковые правильные треугольники. Стороны треугольников – шоссейные дороги, а вершины треугольников – перекрестки. Из точек A и B, расположенных на одной дороге (стороне треугольника), одновременно в одном направлении с одинаковыми скоростями выезжают две машины. Доехав до любого перекрёстка, каждая машина может или продолжить свое движение в том же направлении, или же повернуть на 120° вправо или влево. Могут ли машины встретиться?
Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 28]