ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе лежат 15 журналов, закрывающих его целиком. Докажите, что можно забрать семь журналов так, чтобы оставшиеся журналы закрывали не меньше 8/15 площади стола. (Эту задачу не решил никто из участников олимпиады.)

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78076  (#1)

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9

Точка O — центр круга, описанного около треугольника ABC. Точки A1, B1 и C1 симметричны точке O относительно сторон треугольника ABC. Докажите, что все высоты треугольника A1B1C1 проходят через точку O, а все высоты треугольника ABC проходят через центр круга, описанного около треугольника A1B1C1.
Прислать комментарий     Решение


Задача 78077  (#2)

Темы:   [ Правильные многоугольники ]
[ Шестиугольники ]
[ Итерации ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Последовательности и ряды функций ]
Сложность: 3
Классы: 8,9

Точки A1, A2, A3, A4, A5, A6 делят окружность радиуса 1 на шесть равных частей. Из A1 провёден луч l1 в направлении A2, из A2 – луч l2 в направлении A3, ..., из A6 – луч l6 в направлении A1. Из точки B1, взятой на луче l1, опускается перпендикуляр на луч l6, из основания этого перпендикуляра опускается перпендикуляр на l5 и т. д. Основание шестого перпендикуляра совпало с B1. Найти отрезок B1A1.

Прислать комментарий     Решение

Задача 78078  (#3)

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9

100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд. Подчеркнуто, во-первых, каждое положительное число, а во-вторых, каждое число, сумма которого со следующим положительна. Может ли сумма всех подчеркнутых чисел оказаться отрицательной? Равной нулю?
Прислать комментарий     Решение


Задача 78079  (#4)

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9

64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы: по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на одной из диагоналей, равна 112. Числа, расположенные симметрично относительно этой диагонали, равны. Докажите, что сумма чисел в каждом столбце меньше 1035.

Прислать комментарий     Решение

Задача 78080  (#5)

Темы:   [ Неравенства с площадями ]
[ Итерации ]
Сложность: 6
Классы: 8,9

На столе лежат 15 журналов, закрывающих его целиком. Докажите, что можно забрать семь журналов так, чтобы оставшиеся журналы закрывали не меньше 8/15 площади стола. (Эту задачу не решил никто из участников олимпиады.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .