Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]
|
|
Сложность: 4+ Классы: 9,10,11
|
Играют двое; один из них загадывает набор из целых чисел (
x1,
x2,...,
xn)
-- однозначных, как положительных, так и отрицательных. Второму разрешается
спрашивать, чему равна сумма
a1x1 + ... +
anxn, где
(
a1...
an)
-- любой набор. Каково наименьшее число вопросов, за которое отгадывающий
узнает задуманный набор?
|
|
Сложность: 4+ Классы: 9,10,11
|
На плоскости дано
N точек, никакие три из которых не лежат на одной прямой. Если
A,
B,
C — любые три из них, то внутри
треугольника
ABC нет ни одной точки из данных. Доказать, что эти точки можно
занумеровать так, что многоугольник
A1A2...
An будет выпуклым.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дана четвёрка ненулевых чисел
a,
b,
c,
d. Из неё получается новая
ab,
bc,
cd,
da по
следующему правилу: каждое число умножается на следующее, четвёртое — на
первое. Из новой четвёрки по этому же правилу получается третья и т.д.
Доказать, что в полученной последовательности четвёрок никогда не встретится
вновь четверка
a,
b,
c,
d, кроме случая, когда
a =
b =
c =
d = 1.
|
|
Сложность: 4+ Классы: 8,9,10
|
В прямоугольник со сторонами 20 и 25 бросают 120 квадратов со стороной
1. Доказать, что в прямоугольник можно поместить круг диаметра 1, не
пересекающийся ни с одним из квадратов.
|
|
Сложность: 5- Классы: 10,11
|
Окружность
S и точка
O лежат в одной плоскости, причём
O находится вне
окружности. Построим произвольный шар, проходящий через окружность
S, и
опишем конус с вершиной в точке
O и касающийся шара. Найти геометрическое
место центров окружностей, по которым конусы касаются шаров.
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]