ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 7843]      



Задача 88217

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Раскраски ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

В городе Васюки у всех семей были отдельные дома. В один прекрасный день каждая семья переехала в дом, который раньше занимала другая семья. В связи с этим было решено покрасить все дома в красный, синий или зелёный цвет, причём так, чтобы для каждой семьи цвет нового и старого домов не совпадал. Можно ли это сделать?

Прислать комментарий     Решение

Задача 97894

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Признаки делимости (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фомин С.В.

Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?

Прислать комментарий     Решение

Задача 97921

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Неравенство Коши ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

Докажите, что при любом a имеет место неравенство:   3(1 + a² + a4) ≥ (1 + a + a²)².

Прислать комментарий     Решение

Задача 97934

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

Прислать комментарий     Решение

Задача 97979

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

Докажите, что из любых семи натуральных чисел (не обязательно идущих подряд) можно выбрать три числа, сумма которых делится на 3.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 7843]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .