ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 98339  (#1)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 7,8,9,10

Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?

Прислать комментарий     Решение

Задача 108078  (#2)

Темы:   [ Биссектриса угла (ГМТ) ]
[ Вневписанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение, в котором биссектриса делит сторону ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.

Прислать комментарий     Решение

Задача 98352  (#3)

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Автор: Разин М.

Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
  а) веса гирь набора все целые,
  б) веса не обязательно целые?

Прислать комментарий     Решение

Задача 98353  (#4)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Соображения непрерывности ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Выпуклые многоугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
  а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
  б) Докажите, что найдутся две такие хорды.

Прислать комментарий     Решение

Задача 107843  (#5)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Замена переменных ]
[ Тождественные преобразования ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 8,9,10

Положительные числа a, b и c таковы, что  abc = 1.  Докажите неравенство

+ + ≤ 1.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .