Страница: 1
2 >> [Всего задач: 7]
Задача
98339
(#1)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков
разрезать на две части и разложить сыр в два пакета так, что части разрезанного
куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?
В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.
Задача
98352
(#3)
|
|
Сложность: 4+ Классы: 8,9,10
|
Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес
от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
а) веса гирь набора все целые,
б) веса не обязательно целые?
Задача
98353
(#4)
|
|
Сложность: 5- Классы: 9,10,11
|
Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
б) Докажите, что найдутся две такие хорды.
|
|
Сложность: 4+ Классы: 8,9,10
|
Положительные числа a, b и c таковы, что abc = 1. Докажите неравенство
Страница: 1
2 >> [Всего задач: 7]