Страница:
<< 6 7 8 9 10
11 12 >> [Всего задач: 56]
Задача
108157
(#99.5.10.6)
|
|
Сложность: 4 Классы: 8,9
|
В треугольнике ABC окружность, проходящая через вершины A и B, касается прямой BC, а окружность, проходящая через вершины B и C, касается прямой AB и второй раз пересекает первую окружность в точке K. Пусть O – центр описанной окружности треугольника ABC. Докажите, что угол BKO – прямой.
Задача
109697
(#99.5.10.7)
|
|
Сложность: 4 Классы: 8,9,10
|
Для некоторых положительных чисел x и y выполняется неравенство
x² + y³ ≥ x³ + y4. Докажите, что x³ + y³ ≤ 2.
Задача
109698
(#99.5.10.8)
|
|
Сложность: 5 Классы: 8,9,10
|
В некоторой группе из 12 человек среди каждых девяти найдутся пять попарно знакомых. Докажите, что в этой группе найдутся шесть попарно знакомых.
Задача
109684
(#99.5.11.1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой
цифр, что их сумма равна 1999?
Задача
109685
(#99.5.11.2)
|
|
Сложность: 4 Классы: 9,10,11
|
Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не
превосходит удвоенного числа в его середине.
Страница:
<< 6 7 8 9 10
11 12 >> [Всего задач: 56]