Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 819]
|
|
Сложность: 3 Классы: 8,9,10,11
|
На плоскости отмечено пять точек. Найдите наибольшее возможное число подобных треугольников с вершинами в этих точках.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Рассмотрим две окружности $\Omega$ и $\omega$, касающиеся друг друга внутренним образом в точке $A$. Пусть хорда $BC$ окружности $\Omega$ касается окружности $\omega$ в точке $K$. Пусть также $O$ – центр $\omega$. Тогда окружность $BOC$ делит отрезок $AK$ пополам.
|
|
Сложность: 3 Классы: 8,9,10
|
В выпуклом четырехугольнике $ABCD$ центры описанной и вписанной окружностей треугольника $ABC$ совпадают соответственно с центрами вписанной и описанной окружностей треугольника $ADC$. Известно, что $AB=1$. Найдите длины остальных сторон и углы четырехугольника.
|
|
Сложность: 3 Классы: 8,9,10
|
Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 819]