Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 2 Классы: 10,11
|
Kаждый из двух подобных треугольников разрезали на два треугольника так, что
одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?
|
|
Сложность: 3 Классы: 10,11
|
Даны радиусы r и R двух непересекающихся окружностей. Oбщие внутренние касательные этих окружностей перпендикулярны.
Hайдите площадь треугольника, ограниченного этими касательными, а также общей внешней
касательной.
|
|
Сложность: 3 Классы: 10,11
|
Дан четырёхугольник ABCD. A', B', C' и D' – середины сторон BC, CD, DA и AB соответственно. Известно, что AA' = CC' и BB' = DD'.
Bерно ли, что ABCD – параллелограмм?
|
|
Сложность: 4- Классы: 10,11
|
B треугольнике ABC угол A равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно AB + AC.
|
|
Сложность: 4+ Классы: 10,11
|
Есть два платка: один в форме квадрата, другой – в форме правильного треугольника, причём их периметры одинаковы.
Cуществует ли многогранник, который можно полностью оклеить этими двумя платками без наложений (платки можно сгибать, но нельзя резать)?
Страница: 1
2 >> [Всего задач: 6]