Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 47]
Задача
64461
(#6)
|
|
Сложность: 3+ Классы: 8,9,10
|
Диагонали AC, BD трапеции ABCD пересекаются в точке P. Описанные окружности треугольников ABP, CDP пересекают прямую AD в точках X, Y. Точка M – середина XY. Докажите, что BM = CM.
Задача
64462
(#7)
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть BD – биссектриса треугольника ABC. Точки Ia, Ic – центры вписанных окружностей треугольников ABD, CBD. Прямая IaIc пересекает прямую AC в точке Q. Докажите, что ∠DBQ = 90°.
Задача
64463
(#8)
|
|
Сложность: 5- Классы: 8,9,10
|
Вокруг треугольника ABC описана окружность. Пусть X – точка внутри окружности, K и L – точки пересечения этой окружности и прямых BX и CX соответственно. Прямая LK пересекает прямую AB в точке E, а прямую AC в точке F. Найдите геометрическое место таких точек X, что описанные окружности треугольников AFK и AEL касаются.
Задача
64464
(#9)
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть T1, T2 – точки касания вневписанных окружностей треугольника ABC со сторонами BC и AC соответственно. Оказалось, что точка, симметричная центру вписанной окружности треугольника относительно середины AB, лежит на описанной окружности треугольника CT1T2. Найдите угол BCA.
Задача
64465
(#10)
|
|
Сложность: 4 Классы: 8,9,10
|
Вписанная окружность треугольника ABC касается стороны AB в точке C'. Вписанная окружность треугольника ACC' касается сторон AB и AC в точках C1, B1; Вписанная окружность треугольника BCC', касается сторон AB и BC в точках C2, A2. Докажите, что прямые B1C1, A2C2 и CC' пересекаются в одной точке.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 47]