ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 64385  (#8.1)

Темы:   [ Пятиугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

Прислать комментарий     Решение

Задача 64386  (#8.2)

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Четыре точки, лежащие на одной окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 4-
Классы: 8,9

Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D.
Докажите, что центр O описанной окружности треугольника CBD равноудалён от точек O1 и O2.

Прислать комментарий     Решение

Задача 64387  (#8.3)

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4-
Классы: 8,9

В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?

Прислать комментарий     Решение

Задача 64388  (#8.4)

Темы:   [ Четырехугольники (построения) ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Симметрия и построения ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке L. В треугольнике ABL отметили точку пересечения высот H, а в треугольниках BCL, CDL и DAL – центры O1, O2 и O3 описанных окружностей. Затем весь рисунок, кроме точек H, O1, O2, O3, стерли. Восстановите его.

Прислать комментарий     Решение

Задача 64389  (#8.5)

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Высота AA', медиана BB' и биссектриса CC' треугольника ABC пересекаются в точке K. Известно, что  A'K = B'K.
Докажите, что и отрезок C'K имеет ту же длину.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .