Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]
Задача
65707
(#11.4)
|
|
Сложность: 4 Классы: 10,11
|
Есть клетчатая доска 2015×2015. Дима ставит в k клеток по детектору. Затем Коля располагает на доске клетчатый корабль в форме квадрата 1500×1500. Детектор в клетке сообщает Диме, накрыта эта клетка кораблём или нет. При каком наименьшем k Дима может расположить детекторы так, чтобы гарантированно восстановить расположение корабля?
Задача
65744
(#9.4)
|
|
Сложность: 4 Классы: 8,9,10
|
Из клетчатого бумажного квадрата 100×100 вырезали по границам клеток 1950 доминошек (двуклеточных прямоугольников). Докажите, что из оставшейся части можно вырезать по границам клеток четырёхклеточную фигурку вида Т – возможно, повёрнутую. (Если такая фигурка уже есть среди оставшихся частей, считается, что её получилось вырезать.)
Задача
65752
(#10.4)
|
|
Сложность: 3 Классы: 10,11
|
Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.
Задача
65760
(#11.4)
|
|
Сложность: 5- Классы: 10,11
|
В координатном пространстве провели все плоскости с уравнениями x ± y ± z = n (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка (x0, y0, z0) с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка (kx0, ky0, kz0) лежит строго внутри некоторого октаэдра разбиения.
Задача
65697
(#9.5)
|
|
Сложность: 3+ Классы: 9,10,11
|
В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]