ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На сторонах AB и BC параллелограмма ABCD выбраны точки A1 и C1 соответственно. Отрезки AC1 и CA1 пересекаются в точке P . Описанные окружности треугольников AA1P и CC1P вторично пересекаются в точке Q , лежащей внутри треугольника ACD . Докажите, что ![]() ![]() На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и ![]() ![]() |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 375]
Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ.
На сторонах AB, BC и AC треугольника ABC взяты соответственно точки D, E и F так, что DE = BE, FE = CE. Докажите, что центр описанной около треугольника ADF окружности лежит на биссектрисе угла DEF.
На стороне AD вписанного в окружность четырёхугольника ABCD находится центр окружности, касающейся трёх других сторон четырёхугольника. Найдите AD, если AB = 2 и CD = 3.
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 375] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |