ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В окружность вписан четырёхугольник ABCD. На дуге AD, не
содержащей вершин B и C, взята точка K. Точки P, Q, M и N являются основаниями перпендикуляров, опущенных из точки K
соответственно на стороны AD, BC, AB и CD (или на продолжения
этих сторон). Известно, что KP = d, а ![]() ![]() В треугольной пирамиде ABCD рёбра AC и BD взаимно перпендикулярны, AB=BD=AD=a , середина ребра AC равноудалена от плоскостей ABD и BCD , угол между ребром AC и гранью CBD равен arcsin ![]() ![]() ![]() Ребро PA четырёхугольной пирамиды PABCD перпендикулярно плоскости основания ABCD . Ребро PA равно 6. Основание ABCD – квадрат со стороной 8. Точки M и N – середины отрезков AD и CD . Найдите радиус сферы, вписанной в пирамиду SDMN . ![]() ![]() ![]()
Прямые, касающиеся окружности в точках A и B, пересекаются в
точке M, а прямые, касающиеся той же окружности в точках C и D,
пересекаются в точке N, причём
NC
![]() ![]() |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 499]
Трапеция KLMN с основаниями LM и KN вписана в окружность, центр которой лежит на основании KN. Диагональ LN трапеции равна 4, а угол MNK равен 60o. Найдите основание LM трапеции.
Во вписанном четырёхугольнике ABCD известны углы: ∠DAB = α, ∠ABC = β, ∠BKC = γ, где K – точка пересечения диагоналей. Найдите угол ACD.
В выпуклом четырёхугольнике MNPQ диагональ NQ является
биссектрисой угла PNM и пересекается с диагональю PM в точке S.
Продолжение медианы AM треугольника ABC пересекает его описанную окружность в точке D. Найдите BC, если AC = DC = 1.
Через точку D основания AB равнобедренного треугольника ABC проведена прямая CD, пересекающая его описанную окружность в точке E.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |