ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите меньшее основание равнобедренной трапеции, если основание высоты, опущенной из вершины меньшего основания на большее, делит большее основание на отрезки, один из которых на 10 меньше другого.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 293]      



Задача 53253

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

В равнобедренную трапецию с боковой стороной, равной 9, вписана окружность радиуса 4. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 53502

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Меньшее основание равнобедренной трапеции равно боковой стороне, а диагональ перпендикулярна боковой стороне. Найдите углы трапеции.

Прислать комментарий     Решение

Задача 53512

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

В равнобедренной трапеции ABCD основание AD равно a, основание BC равно b,  AB = d.  Через вершину B проведена прямая, делящая пополам диагональ AC и пересекающая прямую AD в точке K. Найдите площадь треугольника BDK.

Прислать комментарий     Решение

Задача 53517

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Отношения площадей подобных фигур ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

В трапеции ABCD диагональ AC перпендикулярна боковой стороне CD, а диагональ DB перпендикулярна боковой стороне AB. На продолжениях боковых сторон AB и DC за меньшее основание BC отложены отрезки BM и CN так, что получается новая трапеция BMNC, подобная трапеции ABCD. Найдите площадь трапеции ABCD, если площадь трапеции AMND равна S, а сумма углов CAD и BDA равна 60°.

Прислать комментарий     Решение

Задача 66592

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8,9,10,11

Дана равнобокая трапеция, сумма боковых сторон которой равна большему основанию. Докажите, что острый угол между диагоналями не больше чем $60^\circ$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 293]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .