ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан отрезок AB и прямая MN, пересекающая его. Построить треугольник ABC так, чтобы прямая MN делила его угол пополам. ![]() ![]() Пусть M и N – середины сторон AD и BC прямоугольника ABCD. На продолжении отрезка DC за точку D взята точка P, Q – точка пересечения прямых PM и AC. Докажите, что ∠QNM = ∠MNP. ![]() ![]() |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 501]
На стороне AB квадрата ABCD взята точка E, а на стороне CD – точка F, причём AE : EB = 1 : 2, а CF = FD.
На каждой стороне квадрата взяли по одной точке. Оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата. Найдите периметр прямоугольника, если диагональ квадрата равна 6.
Вершины M и N равнобедренного треугольника BMN (BM = BN) лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что MN || AC.
Через произвольную точку внутри квадрата проведены две взаимно перпендикулярные прямые, каждая из которых пересекает две противоположные стороны квадрата. Докажите, что отрезки этих прямых, заключённые внутри квадрата, равны.
На стороне AD ромба ABCD взята точка M, причём MD = 0,3AD и BM = MC = 11. Найдите площадь треугольника BCM.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |