Страница:
<< 46 47 48 49 50 51
52 >> [Всего задач: 258]
|
|
Сложность: 4- Классы: 10,11
|
Четырёхугольник АВСD вписан в окружность, I – центр вписанной окружности треугольника ABD.
Найдите наименьшее значение BD, если AI = BC = CD = 2.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.
|
|
Сложность: 4+ Классы: 9,10,11
|
В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть BC = DE. Докажите, что AB = EF.
|
|
Сложность: 4+ Классы: 8,9,10
|
В данный треугольник поместить центрально-симметричный многоугольник
наибольшей площади.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что для любого неравнобедренного треугольника
, где l1, l2 – наибольшая и наименьшая биссектрисы треугольника, S – его площадь.
Страница:
<< 46 47 48 49 50 51
52 >> [Всего задач: 258]