Страница:
<< 103 104 105 106
107 108 109 >> [Всего задач: 1024]
|
|
Сложность: 3+ Классы: 8,9,10
|
Dписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AA1 = BB1 = CC1. Докажите, что треугольник
ABC правильный.
В трапецию ABCD (BC || AD) вписана окружность,
касающаяся боковых сторон AB и CD в точках K и L
соответственно, а оснований AD и BC в точках M и N.
а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что KQ || AD.
б) Докажите, что AK·KB = CL·LD.
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.
|
|
Сложность: 3+ Классы: 8,9,10
|
Две окружности ω1 и ω2 с центрами O1 и O2 пересекаются в точках A и B. Точки C и D, лежащие соответственно на ω1 и ω2 по разные стороны от прямой AB, равноудалены от этой прямой. Докажите, что точки C и D равноудалены от середины отрезка O1O2.
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что окружность, построенная на стороне AB треугольника ABC как на диаметре, касается его вписанной окружности тогда и только тогда, когда сторона AB равна радиусу вневписанной окружности, касающейся этой стороны.
Страница:
<< 103 104 105 106
107 108 109 >> [Всего задач: 1024]